## Journal of Organometallic Chemistry, 172 (1979) 239–249 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE SYNTHESIS AND CRYSTAL AND MOLECULAR STRUCTURE OF

 $H_{3}(\mu - \eta^{2} - C_{6}H_{4})(\mu - \eta^{2} - HC_{3}NC_{6}H_{5})Os_{3}(CO)_{8}$ 

Richard D. Adams \* and Nancy M. Golembeski

Department of Chemistry, Yale University, New Haven, CT 06520 (U.S.A.) (Received January 9th, 1979)

#### Summary

The complex  $H_3(1-n^2-C_6H_4)(\mu-n^2-HC_3NC_6H_5)Os_3(CO)_8$  has been synthesized and characterized by IR, <sup>1</sup>H NMR and X-ray crystal structure analyses. The compound contains a <u>dihapto</u>-benzyne ligand bridging one edge of a triangular cluster of osmium atoms and a <u>dihapto</u>-formimidoyl ligand bridging a different edge on the opposite face of the cluster from the benzyne ligand.

#### Introduction

We are currently investigating the nature of the reactions of the cluster hydride complex  $H_2Os_3(CO)_{10}$  with isocyanide molecules [1-3]. In the course of these studies we have isolated small amounts of the title compound whose <sup>1</sup>H NMR spectra indicated that it contained a formimidoyl,  $HC=NC_6H_5$ , ligand which was evidently formed by transfer of a hydrogen atom from the cluster to the isocyanide ligand. In hopes of more fully defining the coordinative behavior of formimidoyl ligands in cluster compounds this compound was characterized by an x-ray crystal structure analysis which is reported herein.

#### Experimental

Preparation of  $H_3(u-\eta^2-C_6H_4)(u-\eta^2-HC=NC_6H_5)0s_3(CO)_8$ .

0.2g of  $H_2Os_3(CO)_{10}(CNC_6H_5)$ [2] in 20 ml of n-butylether was refluxed for approximately 24 hrs. The solvent was removed in vacuo. The yellow product was isolated in low yield by chromatography over  $Al_2O_3 \cdot 6\%H_2O$  using hexanes solvent. Crystals were grown by cooling hexanes solutions to -20°. IR:v(CO)in hexanes: 2082m, 2048s, 2030s, 2004s, 1975s, 1965m; m.p.~195dec; <sup>1</sup>H nmr  $\delta$  = 10.58s, 8.06m, 6.93m, -10.64s, +10.83s, and -12.51ppm (in d<sub>6</sub>-acetone solvent).

#### Structural Analysis

All diffraction measurements were performed on an Enraf-Nonius CAD-4 fully automated four-circle diffractometer using graphite monochromatized MoK-radiation. Unit cells were determined and refined using 25 randomly collected reflections obtained using the CAD-4 automatic search, center, index and least squares routines.

Structure Solution.

All calculations were performed on a Digital PDP 11/45 computer using the Enraf-Nonius SDP program library. Anomalous dispersion corrections [4a] were made for scattering [4b] by all nonhydrogen atoms. Least squares refinements minimized the function  $\Sigma w(F_{obs}-F_{calc})^2$  where the weighting factor  $w = 1/_{cr}(F)^2$ . Unweighted and weighted residuals were determined by the formulae

$$R = \frac{\sum_{i} |F_{obs}|^{-|F_{calc}|}}{\sum_{i} |F_{obs}|}$$

$$R_{w} = \frac{\sum_{i} |F_{obs}|^{-|F_{calc}|}}{\sum_{i} |F_{obs}|^{2}}$$

$$1/2$$

Crystal data and data collection parameters are listed in Table 1.

A crystal with dimensions 0.16mm x 0.34mm x 0.17mm was cleaved and mounted in a thin-walled glass capillary. The crystal faces were identified as  $2\overline{11}$ ,  $\overline{211}$ , 102, 010, 0 $\overline{10}$  and  $\overline{129}$  with the latter being assigned to the cleavage face.  $\pm$ -scan peak widths at half height lay in the range 0.15-0.25°. Of the 5413 reflections which were measured 3879 conformed to the relation  $F^2 \ge 3.0 \text{ G}(F^2)$  and were used in the subsequent structure solution and refinement. The linear absorption coefficient is 169.5 cm<sup>-1</sup>. The data were corrected for absorption using the Gaussian integration method.

240

```
TABLE 1. Experimental Data for X-ray Diffraction Study of H_3(\mu-\eta^2-C_6H_4)-
            (\mu - \eta^2 - HC = NC_6 H_5) Os_3 (CO)_8
 (A) Crystal Parameters at 22<sup>o</sup>
      Space Group: PI
                                              V = 1196.0(4) A^{03}
      a = 9.380(2) Å
      b = 9.659(2) Å
                                              Z = 2
      c \approx 15.022(3)Å
                                              Mol. wt. 975.9
      \alpha = 73.96(1)^{\circ}
                                              \rho_{calc} = 2.71 \text{ g.cm}^{-3}
      \beta = 70.10(2)^{\circ}
      \gamma = 72.28(2)^{\circ}
(B) Measurement of Intensity Data
      Radiation: Mo K\alpha; \lambda = 0.71073Å
      Monochromator: Graphite
      Takeoff Angle: 2.5°
      Detector Aperture: Horizontal, A + B tan e
           A = 3.0mm; B = 1.0mm; Vertical, 4.0mm
      Crystal-Detector Distance: ' 330mm
      Crystal Orientation: b^* oriented 5.7° from Ø-axis of diffractometer
      Reflections measured: +h,±k,±&
     Max 20: 55°
      Scan Type: couple 0(crystal)-20(counter)
     Scan Speed: variable max \theta = 10.00 \text{ min}^{-1}
                               \min \theta = 1.25^{\circ} \min^{-1}
     \theta Scan Width = 0.80 + 0.347 \frac{1}{2} an \theta^{\circ} on each side of calc. position
     Background: moving crystal-moving counter
                 1/4 additional scan at each end of scan
     Std. Reflections: 3 measured after approx. each
           100 data reflections showed only random fluctuation of + 3%
     Reflections measured: 5413
     Data used (F^2 > 3.0 \sigma(F^2): 3379 reflections
(C) Treatment of Data
     Absorption coeff: \mu = 169.5 \text{ cm}^{-1}
     Grid: 10x8x10
     Transmission factors: max. 0.141; min. 0.037
      ignorance factor: p = 0.05
     Decay correction: min. 0.99; max. 1.04
```

The structure was solved by a combination of Patterson and difference Fourier techniques. Full matrix least squares refinement using anisotropic thermal parameters for all nonhydrogen atoms converged to the final residuals R = 0.067 and  $R_w = 0.088$ . Although many hydrogen atoms were observed in differenc Fourier syntheses, all hydrogen positions were calculated using idealized geometry. Hydrogen atoms were included in structure factor calculations using isotropic temperature factors of 5.0, but they were not refined. The largest peaks in a final difference Fourier synthesis were  $4.1-4.4 \text{ e}^{-}/\text{A}^{3}$  and were clustered about the metal atoms. The largest value of the shift/error parameter on the final cycle of refinement was 0.13. The error in an observation of unit weight was 2.91. Final fractional atomic coordinates are listed in Table 2.

Table 2. Final Fractional Atomic Coordinates with Esds for  $H_3(\mu-\eta^2-C_6H_4)$  $(\mu-\eta^2-HC=NC_6H_5)Os_3(CO)_8$ 

| Atoms | x/a       | у/Ъ           | z/c <sup>.</sup>   | Atoms | .x/a     | у/b       | .z/c      |
|-------|-----------|---------------|--------------------|-------|----------|-----------|-----------|
| 051   | 0.34074(7 | 7) 0.12678(7) | <b>0.</b> 35575(5) | C5    | 0.554(2) | 0.296(2)  | 0.014(1)  |
| 0S2   | 0.47078(8 | 3) 0.20189(7) | 0.15113(4)         | C6    | 0.261(2) | 0.308(2)  | 0.152(1)  |
| 0S3   | 0.56400(7 | 7) 0.31794(7) | 0.27932(5)         | C7    | 0.648(2) | 0.305(2)  | 0.381(1)  |
| 01    | 0.231(2)  | 0.073(2)      | 0.577(1)           | C8    | 0.654(1) | 0.484(2)  | 0.200(2)  |
| 02    | 0.548(2)  | -0.188(1)     | 0.338(1)           | C11   | 0.329(2) | 0.445(1)  | 0.333(1)  |
| 03    | 0.056(2)  | . 0.070(2)    | 0.329(1)           | C12   | 0.230(2) | 0.352(2)  | 0.358(1)  |
| 04    | 0.410(2)  | -0.075(2)     | 0.127(1)           | C13   | 0.072(2) | 0.426(2)  | 0.378(1)  |
| 05    | 0.587(2)  | 0.351(2)      | -0.060(1)          | C14   | 0.019(2) | 0.572(3)  | 0.379(2)  |
| 06    | 0.139(2)  | 0.369(2)      | 0.150(1)           | C15   | 0.119(3) | 0.656(2)  | 0.359(2)  |
| 07    | 0.705(2)  | 0.303(2)      | 0.438(1)           | C16   | 0.280(2) | 0.593(2)  | 0.332(1)  |
| 08    | 0.711(2)  | 0.570(2)      | 0.156(2)           | C2 1  | 0.808(2) | -0.032(2) | 0.126(1)  |
| N     | 0.705(2)  | 0.095(1)      | 0.1661(9)          | C22   | 0.813(2) | -0.048(2) | 0.034(1)  |
| C1    | 0.271(2)  | 0.091(2)      | 0.496(2)           | C23   | 0.912(2) | -0.164(2) | -0.008(1) |
| C2    | 0.475(2)  | -0.071(2)     | 0.342(1)           | C24   | 1.011(3) | -0.269(2) | 0.041(2)  |
| C3    | 0.167(2)  | 0.090(2)      | 0.337(1)           | C25   | 1.004(3) | -0.258(3) | 0.134(2)  |
| C4    | 0.433(2)  | 0.025(2)      | 0.137(1)           | C26   | 0.904(3) | -0.138(2) | 0.172(1)  |
|       |           |               |                    | C27   | 0.745(2) | 0.156(2)  | 0.216(1)  |

 $\mathbf{242}$ 

Anisotropic thermal parameters are listed in Table 3. Bond distances and angles with estimated standard deviations determined from the inverse matrix obtained on the final cycle of refinement are listed in Tables 3 and 4.

### Results and Discussion

The molecular structure of  $H_3(u-\eta^2-C_6H_4)(u-\eta^2-HC=NC_6H_5)Os_3(CO)_8$  is shown in the Figure. The complex consists of a triangular cluster of osmium atoms. There are eight normal linear carbonyl groups in addition a  $C_6H_4$ , benzyne, and a  $HC=NC_6H_5$ , N-phenylformimidoyl,ligand.

The benzyne ligand bridges the one edge of the cluster along the 0s(1)-0s(3)bond. The carbon atom C(11) is bonded solely to osmium atom 0s(3), 0s(3)-C(11) = 2.165(9)Å and carbon atom C(12) is bonded solely to 0s(1), 0s(1)-C(12) = 2.107(10)Å. These distances are very similar to the osmium-carbon distances found in three other triosmium-benzyne complexes even though the benzyne ligands in each of these latter complexes bridged the face of  $0s_3$  cluster [5,6]. The average carboncarbon bond distance around the benzyne ring is 1.37Å and within the precision of determinations there do not appear to be any significant (greater than  $3_{0}$ ) deviations from that value. The identification of the benzyne ring in this complex was a complete surprise. Its origin must have been an isocyanide ligand but mechanistic details are not presently known. Interestingly, the preparation of several benzyne-triosmium complexes through the activation of triphenylphosphine ligands have been reported [5-7].

The phenylformimidoyl ligand bridges the 0s(2)-0s(3) edge of the cluster and is on the opposite side of the  $0s_3$  plane from the benzyne ligand. The bond distances 0s(3)-C(27) = 2.082(14)Å, 0s(2)-N = 2.186(9)Å and C(27)-N =1.274(14)Å are very similar to the distances 0s-C = 2.075(9)Å, 0s-N = 2.150(6)Å, (continued on p. 246)

243

<sup>\*</sup> The table of final observed and calculated structure factor amplitudes has been deposited as NAPS Document No. 03427 (29 pages). Order form ASIS/NAPS, c/o Nicrofiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. A copy may be secured by citing the document number, remitting \$7.25 for photocopies or \$3.00 for microfiche. Advance payment is required. Make checks payable to Microfiche Publications.

| Atom | <u>ß(1,1)</u> | <u>β(2,2)</u> | β(3,3)     | <u>\$(1,2)</u> | <u>β(1,3)</u> | β(2,3)      |
|------|---------------|---------------|------------|----------------|---------------|-------------|
| 0S1  | 0.00948(6)    | 0.00871(6)    | 0.00539(3) | -0.0059(1)     | -0.00542(7)   | -0.00155(7) |
| 0S2  | 0.01300(7)    | 0.00906(6)    | 0.00492(3) | -0.0032(1)     | -0.00826(6)   | -0.00229(7) |
| 053  | 0.01061(7)    | 0.01056(6)    | 0.00524(3) | -0.0088(1)     | -0.00485(7)   | -0.00317(7) |
| 01   | 0.019(2)      | 0.020(2)      | 0.0040(7)  | -0.005(4)      | -0.001(2)     | 0.001(2)    |
| 02   | 0.021(2)      | 0.009(2)      | 0.0118(12) | -0.005(3)      | -0.008(3)     | -0.003(2)   |
| 03   | 0.019(2)      | 0.022(2)      | 0.0177(12) | -0.013(3)      | -0.020(2)     | -0.012(2)   |
| 04   | 0.033(2)      | 0.017(2)      | 0.0110(9)  | -0.022(3)      | -0.019(2)     | -0.005(2)   |
| 05   | 0.032(3)      | 0.013(2)      | 0.0053(7)  | -0.008(4)      | -0.009(2)     | 0.001(2)    |
| 06   | 0.021(2)      | 0.016(2)      | 0.0131(9)  | 0.009(3)       | -0.022(2)     | -0.010(2)   |
| 07   | 0.020(2)      | 0.042(3)      | 0.0080(7)  | -0.020(3)      | -0.010(2)     | -0.016(2)   |
| 08   | 0.025(3)      | 0.019(2)      | 0.0163(18) | -0.025(4)      | -0.007(4)     | 0.002(3)    |
| N    | 0.012(2)      | 0.008(1)      | 0.0041(6)  | -0.003(2)      | -0.004(2)     | -0.002(1)   |
| C1   | 0.009(2)      | 0.010(2)      | 0.0091(12) | 0.004(4)       | -0.006(2)     | -0.004(3)   |
| C2   | 0.013(2)      | 0.013(2)      | 0.0075(10) | -0.007(3)      | -0.006(2)     | -0.006(2)   |
| C3   | 0.017(3)      | 0.007(2)      | 0.0062(10) | -0.007(3)      | -0.003(3)     | -0.002(2)   |
| C4   | 0.018(2)      | 0.016(3)      | 0.0073(9)  | 0.000(4)       | -0.014(2)     | -0.007(2)   |
| C5   | 0.022(3)      | 0.007(2)      | 0.0064(9)  | -0.007(3)      | -0.011(2)     | -0.000(2)   |
| C6   | 0.018(2)      | 0.008(2)      | 0.0081(9)  | -0.002(3)      | -0.013(2)     | -0.004(2)   |
| C7   | 0.014(3)      | 0.017(3)      | 0.0056(10) | -0.012(4)      | -0.001(3)     | -0.002(3)   |
| C8   | 0.019(3)      | 0.022(3)      | 0.0065(11) | -0.026(4)      | -0.001(3)     | -0.005(3)   |
| C11  | 0.009(2)      | 0.006(1)      | 0.0047(7)  | -0.004(2)      | -0.003(2)     | -0.003(1)   |
| C12  | 0.011(2)      | 0.008(2)      | 0.0054(8)  | -0.004(3)      | -0.006(2)     | -0.002(2)   |
| C13  | 0.012(2)      | 0.017(2)      | 0.0052(8)  | -0.008(4)      | -0.004(2)     | -0.005(2)   |
| C14  | 0.014(3)      | 0.018(3)      | 0.0073(11) | -0.000(5)      | -0.007(3)     | -0.007(3)   |
| C15  | 0.021(3)      | 0.012(2)      | 0.0076(11) | -0.000(5)      | -0.008(3)     | -0.005(3)   |
| C16  | 0.018(3)      | 0.012(2)      | 0.0072(9)  | -0.002(4)      | -0.009(2)     | -0.007(2)   |

 $- H_{3}(\mu-\eta^{2}-C_{6}H_{4}^{i})(\mu-\eta^{2}-HC=NC_{6}H_{5})Os_{3}(CO)_{8}$ 

Table 3. (cont.)

| Atom | <u> 8(1,1)</u> | <u>B(2,2)</u> | <u>β(3,3)</u> | <u> 8(1,2)</u> | <u>B(1,3)</u> | <u>\$(2,3)</u> |
|------|----------------|---------------|---------------|----------------|---------------|----------------|
| C21  | 0.012(2)       | 0.012(2)      | 0.0041(7)     | -0.007(3)      | -0.002(2)     | -0.003(2)      |
| C22  | 0.013(2)       | 0.014(2)      | 0.0076(11)    | -0.005(4)      | -0.007(2)     | -0.004(3)      |
| C23  | 0.018(3)       | 0.015(2)      | 0.0059(10)    | -0.012(4)      | -0.005(2)     | -0.004(2)      |
| C24  | 0.019(3)       | 0.008(2)      | 0.0133(17)    | -0.003(4)      | -0.004(4)     | -0.010(3)      |
| C25  | 0.017(3)       | 0.022(4)      | 0.0063(12)    | 0.003(6)       | -0.005(3)     | -0.003(4)      |
| C26  | 0.018(3)       | 0.013(2)      | 0.0044(9)     | -0.004(5)      | -0.005(2)     | -0.001(2)      |
| C27  | 0.010(2)       | 0.023(3)      | 0.0040(7)     | -0.017(3)      | -0.004(2)     | -0.001(2)      |

The form of the anisotropic thermal parameter is:

 $Exp[-(\beta(1,1)h^{2} + \beta(2,2)k^{2} + \beta(3,3) l^{2} + \beta(1,2)hk + \beta(1,3)hl + \beta(2,3)kl )]$ 

Table 4. Bond Distances with Esds for  $H_3(\mu-\eta^2-HC=NC_6H_5)Os_3(CO)_8$ .

| Atoms       | Distance (Å)                                                                                                   | Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Distance (Å)                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 0s(1)-0s(2) | 2.866(1)                                                                                                       | C(27)-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.274(14)                                                                                                       |
| Os(1)-Os(3) | 2.942(1)                                                                                                       | N-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.444(13)                                                                                                       |
| 0s(2)-0s(3) | 2.944(1)                                                                                                       | C(21)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.415(17)                                                                                                       |
| Os(1)-C(1)  | 1.940(15)                                                                                                      | C(22)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.371(18)                                                                                                       |
| Os(1)-C(2)  | 1.963(12)                                                                                                      | C(23)-C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.386(21)                                                                                                       |
| Os(1)-C(3)  | 1.895(13)                                                                                                      | C(24)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.414(22)                                                                                                       |
| Os(1)-C(12) | 2.107(10)                                                                                                      | C(25)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.373(19)                                                                                                       |
| Os(2)-C(4)  | 1.925(15)                                                                                                      | C(26)-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.352(16)                                                                                                       |
| Os(2)-C(5)  | 1.992(13)                                                                                                      | C(1)-O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.124(20)                                                                                                       |
| Os(2)-C(6)  | 1.923(12)                                                                                                      | C(2)-O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.138(14)                                                                                                       |
| Os(2)-N     | 2.186(9)                                                                                                       | C(3)-O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.166(15)                                                                                                       |
| Os(3)-C(7)  | 1.904(14)                                                                                                      | C(4)-O(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.107(16)                                                                                                       |
| Os(3)-C(8)  | 1.940(15)                                                                                                      | C(5)-O(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.082(18)                                                                                                       |
| Os(3)-C(11) | 2.165(9)                                                                                                       | C(6)-O(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.119(15)                                                                                                       |
| Os(3)-C(27) | 2.082(14)                                                                                                      | C(7)-O(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.146(15)                                                                                                       |
| C(11)-C(12) | 1.381(13)                                                                                                      | C(8)-O(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.070(17)                                                                                                       |
| C(12)-C(13) | 1.405(16)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
| C(13)-C(14) | 1.343(19)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
| C(14)-C(15) | 1.332(21)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
| C(15)-C(16) | 1.404(19)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
| C(16)-C(11) | 1.364(14)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |
|             | the second s | (i) a set of a set | Carrier and a second |

245



An ORTEP diagram of  $H_3(u-\eta^2-C_6H_4)(u-\eta^2-HC=NC_6H_5)0s_3(CO)_8$  showing 50% probability ellipsoids. The hydrogen atom H27 is shown in an idealized position with an artificial temperature factor of 1.0.

and C-N = 1.320(10)Å which were found for an edge-bridging phenylfomimidoyl ligand in the complex  $(u-H)(u-\tau_1^2-HC=NC_6H_5)Os_3(CO)_9(P(OCH_3)_3),[2]$ . The short carbon-nitrogen, C(27)-N, distance emphasizes the double bond character of this bond. The hydrogen atom H(27) was not observed crystallographically and is shown in the figure in an idealized position. The most convincing evidence for its location on the carbon atom C(27) is provided by the <sup>1</sup>H NMR spectrum which shows a resonance at  $\delta = 10.58$  ppm. These shifts are well-known to be characteristic of hydrogen atoms on formimidoyl ligands [2,8-12].

The metal-hydride ligands were not observed crystallographically either. On the basis of the <sup>1</sup>H NMR spectrum which showed resonances at 5 = -10.64, -10.83, and -12.51 ppm, the number of hydride ligands appears to be three. This is also consistent with bonding considerations assuming the benzyne ligand serves as a two electron donor and an overall charge on the complex as zero.

| Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Angle(deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Angle(deg)                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0s(1) - 0s(2) - 0s(3)<br>0s(2) - 0s(1) - 0s(3)<br>0s(2) - 0s(1) - 0s(2)<br>0s(2) - 0s(1) - 0s(2)<br>0s(2) - 0s(1) - 0s(3)<br>0s(2) - 0s(1) - 0s(3)<br>0s(2) - 0s(1) - 0s(3)<br>0s(3) - 0s(1) - 0s(2)<br>0s(3) - 0s(1) - 0s(2)<br>0s(3) - 0s(1) - 0s(2)<br>0s(3) - 0s(1) - 0s(2)<br>0s(3) - 0s(1) - 0s(2)<br>0s(1) - 0s(3) - 0s(3)<br>0s(2) - 0s(1) - 0s(2)<br>0s(3) - 0s(2) - 0s(3)<br>0s(2) - 0s(3) - 0s(2) - 0s(3)<br>0s(3) - 0s(3) - 0s(2)<br>0s(3) - 0s(2) - 0s(3)<br>0s(1) - 0s(3) - 0s(3)<br>0s(2) - 0s(3) - 0s(3)<br>0s(3) - 0s(3) - 0s(3)<br>0s(3) - 0s(3) - 0s(3)<br>0s(3) - 0s(3) - 0s(3)<br>0s(3) - 0s( | $\begin{array}{c} 60.84(1) \\ 60.88(1) \\ 58.28(1) \\ 172.0(4) \\ 84.7(4) \\ 90.4(4) \\ 89.4(3) \\ 111.2(4) \\ 103.2(4) \\ 143.7(3) \\ 67.7(3) \\ 97.4(5) \\ 97.1(5) \\ 87.5(4) \\ 95.0(5) \\ 70.8(5) \\ 92.1(4) \\ 89.6(4) \\ 168.1(3) \\ 84.4(4) \\ 90.5(2) \\ 142.2(4) \\ 101.1(13) \\ 107.6(3) \\ 65.3(2) \\ 101.7(5) \\ 90.9(5) \\ 94.3(4) \\ 91.8(5) \\ 92.2(4) \\ 170.7(4) \\ 106.8(4) \\ 157.8(5) \\ 93.6(3) \\ 69.1(2) \\ 155.5(4) \\ 106.7(4) \\ 68.6(3) \\ \end{array}$ | C(7)-0s(3)-C(8) C(7)-0s(3)-C(27) C(7)-0s(3)-C(11) C(8)-0s(3)-C(11) C(8)-0s(3)-C(11) C(27)-0s(3)-C(11) Os(1)-C(12)-C(11) Os(1)-C(12)-C(13) Os(3)-C(11)-C(12) Os(3)-C(11)-C(12) Os(3)-C(11)-C(12) C(12)-C(13)-C(14) C(13)-C(14)-C(15) C(14)-C(15)-C(16) C(15)-C(16)-C(11) C(16)-C(11)-C(12) Os(2)-N-C(27) Os(2)-N-C(21) Os(2)-N-C(21) N-C(21)-C(26) N-C(21)-C(22) C(21)-C(22)-C(23) C(22)-C(23)-C(24) C(23)-C(24)-C(25) C(24)-C(25)-C(26) C(25)-C(26)-C(21) C(26)-C(21)-C(22) Os(1)-C(1)-O(1) Os(2)-C(5)-O(5) Os(2)-C(6)-C(6) Os(3)-C(7)-O(7) Os(3)-C(8)-O(8) | $\begin{array}{c} 32.6(6)\\ 95.3(5)\\ 100.0(5)\\ 95.4(6)\\ 97.3(5)\\ 159.7(4)\\ 115.0(7)\\ 131.1(9)\\ 107.5(6)\\ 128.4(9)\\ 113.1(9)\\ 124.9(12)\\ 119.8(13)\\ 119.6(13)\\ 119.6(13)\\ 119.6(13)\\ 123.6(10)\\ 112.4(7)\\ 125.7(7)\\ 113.3(8)\\ 122.0(10)\\ 122.1(10)\\ 122.1(10)\\ 122.3(12)\\ 118.8(13)\\ 119.0(13)\\ 119.0(13)\\ 122.9(12)\\ 117.3(10)\\ 179.0(10)\\ 177.3(12)\\ 176.8(12)\\ 178.6(12)\\ 176.2(16)\\ \end{array}$ |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Table 5. Bond Angles with Esds for  $H_3(\mu-\eta^2-C_6H_4)(\mu-\eta^2-HC=NC_6H_5)Os_3(CO)_8$ 

Table 6 lists least squares planes of important atomic groupings. The benzyne and formimidoyl ligands are nearly perpendicular to the plane of the  $0s_3$  triangle. The dihedral angles are 79.0° and 72.9°, respectively.

There are no unusually short intermolecular contacts. The shortest contacts are between oxygen atoms of the carbonyl ligands, e.g.  $0(1) - -0(3) = 3.12 \text{\AA}$ ,  $0(4) - -0(5) = 3.09 \text{\AA}$ .

| (  | (u-ŋ <sup>2</sup> -HC=NC <sub>6</sub> H <sub>5</sub> )0s <sub>3</sub> (C | o) <sub>8</sub> . |                              |
|----|--------------------------------------------------------------------------|-------------------|------------------------------|
| A) | Plane No.                                                                | Atoms             | O<br>Distance from Plane (A) |
|    | 1                                                                        | Os(1)             | 0.00                         |
|    |                                                                          | 0s(2)             | 0.00                         |
|    |                                                                          | 0s(3)             | 0.00                         |
|    |                                                                          | C(11)*            | 1.94(2)                      |
|    |                                                                          | C(12)*            | 1.90(2)                      |
|    |                                                                          | C(27)*            | -1.83(2)                     |
|    |                                                                          | N *               | -1.91(1)                     |
|    | 2                                                                        | C(11)             | 0.01(2)                      |
|    |                                                                          | C(12)             | -0.02(2)                     |
|    |                                                                          | C(13)             | 0.01(2)                      |
|    |                                                                          | C(14)             | 0.01(2)                      |
|    |                                                                          | C(15)             | -0.02(2)                     |
|    |                                                                          | C(16)             | 0.01(2)                      |
|    |                                                                          | 0s(1)*            | -0.080(1)                    |
|    |                                                                          | 0s(2)*            | 2.540(1)                     |
| •  |                                                                          | 0s(3)*            | 0.311(1)                     |
|    | 3                                                                        | 0s(2)             | 0.019(1)                     |
|    |                                                                          | <b>Os(3)</b>      | -0.021(1)                    |
|    |                                                                          | C(27)             | 0.05(2)                      |
|    |                                                                          | N                 | -0.05(2)                     |
|    |                                                                          | 0s(1)*            | -2.391(1)                    |
|    | 4                                                                        | C(21)             | 0.01(2)                      |
|    |                                                                          | C(22)             | -0.01(2)                     |
|    |                                                                          | C(23)             | 0.00(2)                      |
|    |                                                                          | C(24)             | 0.02(3)                      |
|    |                                                                          | C(25)             | -0.01(3)                     |
|    |                                                                          | C(26)             | 0.00(2)                      |
|    |                                                                          | N *               | 0.05(2)                      |
|    |                                                                          | C(27)*            | 0.71(2)                      |

Table 6. Unit Weighted Least Squares Atomic Planes for  $H_3(\mu-\eta^2-C_6H_4)$ 

B) Dihedral Angles between Planes

| Planes | Angles(deg) |
|--------|-------------|
| 1-2    | 79.0        |
| 1-3    | . 72.9      |
| 1-4    | -86.2       |
| 2-3    | 48.5        |
| 2-4    | 79.2        |
| 3-4    | 35.0        |

# C) Equations of the Planes are of the Form

|       | Ax + By + Cz - D = 0 | )       |         |         |
|-------|----------------------|---------|---------|---------|
| P1ane | A                    | В       | С       | D       |
| 1     | -0.5776              | 0.8153  | -0.0418 | -1.5775 |
| 2     | -0.2723              | -0.0075 | -0.9622 | -6.1474 |
| 3     | 0.3108               | 0.5412  | -0.7814 | 1.3690  |
| 4     | 0.7852               | 0.4538  | -0.4212 | 5.6593  |
|       |                      | · · · · |         |         |

•

\*These atoms were not used in defining the plane.

## Acknowledgement

This work has been supported under Contract No. ER-78-2-02-4900 from the Office of Basic Energy Sciences, U. S. Department of Energy. NMR spectra were run on the Southern New England High Field NMR facility which is supported by a grant from the Biotechnical Resources Program of the National Institutes of Health (RR-798). We wish to thank Engelhard Industries for a gift of osmium tetroxide.

#### References

- 1. R. D. Adams and N. M. Golembeski, J. Amer. Chem. Soc., 100 (1978)4622.
- 2. R. D. Adams and N. M. Golembeski, J. Amer. Chem. Soc., submitted for publication.
- 3. R. D. Adams and N. M. Golembeski, Inorg. Chem., submitted for publication.
- 4. "International Tables for X-ray Crystallography", Vol. IV, Kynoch Press, Birmingham, England, 1975: a) Table 2.3.1, pp 149-150; b) Table 2.2B, pp 99-101.
- G. J. Gainsford, J. M. Guss, P. R. Ireland, R. Mason, C. W. Bradford, and R. S. Nyholm, J. Organometal. Chem., 40(1972)C70.
- C. W. Bradford, R. S. Nyholm, G. J. Gainsford, J. M. Guss, P. R. Ireland, and R. Mason, J. Chem. Soc. Chem. Commun. (1972)87.
- 7. C. W. Bradford and R. S. Nyholm, J. Chem. Soc. Dalton Trans., (1973)529.
- D. F. Christian, G. R. Clark, W. R. Roper, J. M. Waters, and K. R. Whittle, J. Chem. Soc. Chem. Commun., (1972) 458.
- 9. D. F. Christian, H. C. Clark, and R. F. Stepaniak, J. Organometal. Chem., 112(1976)209.
- 10. D. F. Christian and W. R. Roper, J. Chem. Soc., Dalton Trans., (1975)2556.

. و

- 11. D. F. Christian and W. R. Roper, J. Organometal. Chem., 80(1974)C35.
- 12. T. J. Collins and W. R. Roper, J. Organometal. Chem., 159(1978)73.