Journal of Organometallic Chemistry, 172 (1979) 239-249
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

THE SYNTHESIS AND CRYSTAL AND MOLECULAR STRLCTURE OF
$\mathrm{H}_{3}\left(1-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mu-n^{2}-\mathrm{HC}_{3} \mathrm{NI}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$
Richard D. Adams* and Nancy :H. Golembeski

Department of Chemistry, Yale University, New Haven, CT 06520 (U.S.A.) (Received January 9th, 1979)

Summary
The complex $\mathrm{H}_{3}\left(1-n^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\because-n_{1}^{2}-\mathrm{HC}_{3} \mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$ has been synthesized and characterized by IR, ${ }^{1} H$ NMR and X-ray crystal structure analyses. The compound contains a dinapto-benzyne ligand bridging one edge of a triangular cluster of osmium atoms and a dihapto-formimidoyl ligand bridging a different edge on the opposite Eace of the cluster from the benzyne ligand.

## Introduction

We are currently investigating the nature of the reactions of the cluster hydride complex $\mathrm{H}_{2} \mathrm{OS}_{3}(\mathrm{CO})_{10}$ with isocyanide molecules [1-3]. In the course of these studies we have isolated small amounts of the title compound whose ${ }^{1} H$ NiR spectra indicated that it contained a formimidoyl, $\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}$, ligand which was evidently formed by transfer of a hydrogen atom from the cluster to the isocyanide ligand. In hopes of more fully defining the coordinative behavior of formimidoyl ligands in cluster compounds this compound was characterized by an r-ray crystal structure analysis which is reported herein.

## Experimental

Preparation of $\mathrm{H}_{3}\left(\mu-r_{1}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(u-\eta^{2}-\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$.
0.2 g of $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNC}_{6} \mathrm{H}_{5}\right)$ [2] in 20 ml of n-butylether was refluxed
for approximately 24 hrs. The solvent was removed in vacuo. The yellov product
was isolated in low yield by chromatography over $\mathrm{Al}_{2} \mathrm{O}_{3}-6 \% \mathrm{H}_{2} \mathrm{O}$ using hexanes solvent.

Crystals were grown by cooling hexanes solutions to $-20^{\circ}$. IR: V(C0)in hexanes: $2082 \mathrm{~m}, 2048 \mathrm{~s}, 2030 \mathrm{~s}, 2004 \mathrm{~s}$, 1975 s , $1965 \mathrm{~m} ; \mathrm{m} . \mathrm{p} . \sim 195 \mathrm{dec} ;{ }^{1}{ }_{\mathrm{H}} \mathrm{nmr} \delta=10.58 \mathrm{~s}, 8.06 \mathrm{~m}$, $6.93 \mathrm{~m},-10.64 \mathrm{~s},+10.83 \mathrm{~s}$, and -12.51 ppm (in $\mathrm{d}_{6}$-acetone solvent).

## Structural Analysis

All diffraction measurements were performed on an Enraf-Nonius CAD-4 fully automated four-circle diffractometer using graphite monochromatized MoK-radiation. Unit cells were determined and refined using 25 randomly collected reflections obtained using the CAD-4 automatic search, center, index and least squares routines.

Structure Solution.
All calculations were performed on a Digital PDP $11 / 45$ computer using the Enraf-Nonius SDP program library. Anomalous dispersion corrections [4a] vere made for scattering [4b] by all nonhydrogen atoms. Least squeres refinements minimized the function $\mathrm{SW}_{\mathrm{W}}\left(\mathrm{F}_{\mathrm{obs}}-\mathrm{F}_{\mathrm{calc}}\right)^{2}$ where the weighting factor $\mathrm{w}=1 / \mathrm{H}(\mathrm{F})^{2}$. Unweighted and weighted residuals were determined by the formulae

$$
\begin{aligned}
& R=\quad \frac{\left.\sum_{i j} F_{o b s}\right|^{-\mid F_{c a l c}}{ }^{\prime \prime}}{\left.\Sigma\right|_{\text {obs } \mid}} \\
& \left.R_{w}=\left[\frac{\Sigma w\left(\left|F_{o b s}\right|\left|F_{\text {calc }}\right|^{2}\right.}{\sum_{w}\left|F_{o b s}\right|^{2}}\right]_{1}^{1 / 2}\right]^{1}
\end{aligned}
$$

Crystal data and data collection parameters are listed in Table 1.
A crystal with dimensions $0.16 \mathrm{~mm} \approx 0.34 \mathrm{~mm} \times 0.17 \mathrm{~mm}$ was cleaved and mounted in a thin-walled glass capillary. The crystal faces were identified as $2 \overline{1} \overline{1}$, 211, 102, 010, $0 \overline{1} 0$ and $\overline{1} \overline{2} \overline{9}$ with the latter being assigned to the cleavage face. t-scan peak widths at half height lay in the range $0.15-0.25^{\circ}$. Of the 5413 reflections which were measured 3879 conformed to the relation $F^{2} \geq 3.0 \sigma\left(F^{2}\right)$ and were used in the subsequent structure solution and refinement. The linear absorption coefficient is $169.5 \mathrm{~cm}^{-1}$. The data were corrected for absorption using the Gaussian integration method.

TABLE 1. Experimental Data for X-ray Diffraction Study of $\mathrm{H}_{3}\left(\mu-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ -$\left(\mu-\eta^{2}-\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$
(A) Crystal Parameters at $22^{\circ}$

Space Group: P $\overline{1}$
$a=9.380(2) \AA$
$V=1196.0(4) \stackrel{0}{A}^{3}$
$b=9.659(2) \AA$
$z=2$
$c=15.022(3) \AA$
Mol. wt. 975.9
$\alpha=73.96(1)^{\circ}$
${ }^{\rho}$ calc $=2.71 \mathrm{~g} . \mathrm{cm}^{-3}$
$\beta=70.10(2)^{\circ}$
$\gamma=72.28(2)^{\circ}$
(B) Measurement of Intensity Data

Radiation: Mo $\mathrm{K} \alpha$; $\lambda=0.71073$ \&
Monochromator: Graphite
Takeoff Angle: $2.5^{\circ}$
Detector Aperture: Horizonta1, $A+B \tan \epsilon$
$A=3.0 \mathrm{~mm} ; B=1.0 \mathrm{~mm} ;$ Vertical, 4.0 mm
Crystal-Detector Distance: ${ }^{i} 330 \mathrm{~mm}$
Crystal Orientation: $b^{*}$ oriented $5.7^{\circ}$ from $\emptyset$-axis of diffractometer
Reflections measured: $+h, \pm k, \pm 2$
Max 20: 55 ${ }^{\circ}$
Scan Type: couple $\theta$ (crystal)-2 (counter)
Scan Speed: variable $\max \theta=10.00 \mathrm{~min}^{-1}$
$\min \theta=1.25^{\circ} \mathrm{min}^{-1}$
$\theta$ Scan Width $=0.80+0.347 \tan ^{\circ}$ on each side of calc. position
Background: moving crystal-moving counter
$1 / 4$ additional scan at each end of scan
Std. Reflections: 3 measured after approx. each
100 data reflections showed only random fluctuation of $+3 \%$
Reflections measured: 5413
Data used ( $F^{2}>3.0 \sigma\left(F^{2}\right)$ : 3:379 reflections
(C) Treatment of Data

Absorption coeff: $\mu=169.5 \mathrm{~cm}^{-1}$
Grid: $10 \times 8 \times 10$
Transmission factors: max. J.141; min. 0.037
ignorance factor: $p=0.05$
Decay correction: min. 0.99; max. 1.04

The structure was solved by a combination of Patterson and difference Fourier techniques. Full matrix least squares refinement using anisotropic thermal parameters for all nonhydrogen atoms converged to the final residuals $R=0.067$ and $R_{w}=0.088$. Although many hydrogen atoms were observed in differenc Fourier syntheses, all hydrogen positions were calculated using idealized geometry. Hydrogen atoms were included in structure factor calculations using isotropic temperature factors of 5.0 , but they were not refined. The largest peaks in a final difference Fourier synthesis were $4.1-4.4 e^{-} / A^{3}$ and were clustered about the metal atoms. The largest value of the shift/error parameter on the final cycle of refinement was 0.13 . The error in an observation of unit weight was 2.91. Final fractional atomic coordinates are listed in Table 2.

Table 2. Final Fractional Atomic Coordinates with Esds for $H_{3}\left(\mu-\eta^{2}-C_{6} H_{4}\right)$

$$
\left(\mu-\eta^{2}-\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}
$$

| Atoms | x/a | $y / b$ | $z / c^{\text {c }}$ | Atoms | x/a | y/b | . $7 / \mathrm{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OSI | 0.34074 (7) | ) 0.12678 (7) | $0.35575(5)$ | C5 | 0.554 (2) | $0.296(2)$ | 0.014 (1) |
| OS2 | 0.47078 (8) | 0.20189(7) | $0.15113(4)$ | C6 | 0.261 (2) | $0.308(2)$ | 0.152 (1) |
| os3 | 0.56400 (7) | $0.31794(7)$ | 0.27932 (5) | C7 | 0.648 (2) | 0.303 (2) | 0.381 (1) |
| 01 | 0.231 (2) | 0.073 (2) | 0.577 (1) | C8 | 0.654 (1) | 0.484(2) | $0.200(2)$ |
| 02 | 0.548(2) | -0.188(1) | 0.338 (1) | Cll | 0.329 (2) | 0.445 (1) | 0.333 (1) |
| 03 | 0.056(2) | $0.070(2)$ | 0.329 (1) | C12 | 0.230 (2) | 0.352 (2) | 0.358 (1) |
| 04 | 0.410(2) | -0.075 (2) | 0.127 (1) | C13 | 0.072 (2) | 0.426 (2) | 0.378 (1) |
| 05 | 0.587 (2) | $0.351(2)$ | -0.060 (1) | Cl4 | 0.019 (2) | 0.572 (3) | 0.379 (2) |
| 06 | 0.139 (2) | $0.369(2)$ | $0.150(1)$ | Cl5 | 0.119 (3) | 0.656 (2) | 0.359 (2) |
| 07 | 0.705 (2) | $0.303(2)$ | 0.438 (1) | Cl6 | 0.280 (2) | 0.593 (2) | 0.332 (1) |
| 08 | 0.711 (2) | 0.570(2) | $0.156(2)$ | C2 1 | 0.808(2) | -0.032 (2) | 0.126 ( 1 ) |
| N | 0.705 (2) | 0.095 (1) | 0.1661 (9) | C 22 | $0.813(2)$ | -0.048(2) | 0.034 (1) |
| Cl | 0.271 (2) | 0.091 (2) | $0.496(2)$ | C23 | 0.912 (2) | -0.164(2) | -0.008(1) |
| C 2 | 0.475(2) | -0.071(2) | 0.342 (1) | C24 | 1.011(3) | -0.269 (2) | 0.041 (2) |
| C3 | 0.167 (2) | 0.090 (2) | 0.337 (1) | C25 | 1.004(3) | -0.258(3) | $0.134(2)$ |
| C4 | 0.433(2) | 0.025 (2) | 0.137 (1) | C26 | 0.904 (3) | -0.138(2) | 0.172 (1) |
|  |  |  |  | C27 | 0.745 (2) | $0.156(2)$ | $0.216(1)$ |


#### Abstract

Anisotropic thermal parameters are listed in Table 3. Bond distances and angles with estimated standard deviations determined from the inverse matrix obtained on the final cycle of refinement are listed in Tables 3 and 4.


## Results and Discussion

The molecular structure of $H_{3}\left(11-\eta^{2}-C_{6} H_{4}\right)\left(u-\eta^{2}-\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$ is shown in the Figure. The complex consists of a triangular cluster of osmium atoms. There are eight normal linear carbonyl groups in addition a $C_{6} H_{4}$, benzyne, and a $\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}$, N -phenylformimidoyl, ligand.

The benzyne ligand bridges the cne edge of the cluster along the $0 s(1)-0 s(3)$ bond. The carbon atom $C(11)$ is bonded solely to osmium atom $0 s(3), 0 s(3)-C(11)=$ $2.165(9) \mathrm{A}$ and carbon atom $\mathrm{C}(12)$ is boided solely to $0 \mathrm{~s}(1), 0 \mathrm{~s}(1)-\mathrm{C}(12)=2.107(10) \mathrm{A}^{\circ}$. These distances are very similar to the osmium-carbon distances found in three other triosmium-benzyne complexes even though the benzyne ligands in each of these latter complexes bridged the face of $0 s_{3}$ cluster $[5,6]$. The average carboncarbon bond distance around the benzyne ring is $1.37{ }^{\circ}$ A and within the precision of determinations there do not appear to be any significant (greater than $3_{\sigma}$ ) deviations from that value. The identification of the benzyne ring in this complex was a complete surprise. Its origin must have been an isocyanide ligand but mechanistic details are not presently known. Interestingly, the preparation of several benzyne-triosmium complexes through the activation of triphenylphosphine ligands have been reported [5-7].

The phenylformimidoyl ligand bridges the $0 s(2)-O s(3)$ edge of the cluster and is on the opposite side of the $\mathrm{Os}_{3}$ planc from the benzyne ligand. The bond distances $0 s(3)-C(27)=2.082(14) \mathrm{A}, \quad \operatorname{Os}(2)-\mathrm{N}=2.186(9) \mathrm{A}$ and $\mathrm{C}(27)-\mathrm{N}=$ $1.274(14) \AA$ are very similar to the distances $0 s-C=2.075(9) \dot{A}, 0 s-N=2.150(6) \AA$,
(continued on $0.2 \pm$ )

[^0]Table 3. Final Anisotropic Thermal Parameters with Esds for $\mathrm{H}_{3}\left(\mu-n^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mu-\eta^{2}-\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$

| Atom | 6(1,1) | $B(2,2)$ | $B(3,3)$ | $\underline{B(1,2)}$ | $B(1,3)$ | B(2,3) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OS1 | 0.00948 (6) | 0.00871 (6) | 0.00539 (3) | -0.0059 (1) | -0.00542 (7) | -0.00155 (7) |
| OS2 | $0.01300(7)$ | 0.00906 (6) | 0.00492 (3) | -0.0032 (1) | -0.00826(6) | -0.00229(7) |
| os3 | $0.01061(7)$ | 0.01056 (6) | $0.00524(3)$ | -0.0088(1) | -0.00485(7) | -0.00317(7) |
| 01 | 0.019 (2) | 0.020 (2) | 0.0040 (7) | -0.005 (4) | -0.001 (2) | $0.001(2)$ |
| 02 | 0.021(2) | $0.009(2)$ | $0.0118(12)$ | -0.005(3) | -0.008(3) | -0.003(2) |
| 03 | 0.019 (2) | $0.022(2)$ | $0.0177(12)$ | -0.013(3) | -0.020(2) | -0.012 (2) |
| 04 | $0.033(2)$ | 0.017 (2) | $0.0110(9)$ | -0.022 (3) | -0.019 (2) | -0.005 (2) |
| 05 | $0.032(3)$ | $0.013(2)$ | $0.0053(7)$ | -0.008(4) | -0.009 (2) | $0.001(2)$ |
| 06 | 0.021 (2) | $0.016(2)$ | 0.0131 (9) | $0.009(3)$ | -0.022(2) | -0.010(2) |
| 07 | 0.020(2) | 0.042 (3) | 0.0080 (7) | -0.020 (3) | -0.010(2) | -0.016(2) |
| 08 | 0.025(3) | 0.019(2) | $0.0163(18)$ | -0.025(4) | -0.007(4) | $0.002(3)$ |
| N | 0.012(2) | 0.008(1) | 0.0041 (6) | -0.003(2) | -0.004 (2) | -0.002(1) |
| Cl | 0.009 (2) | 0.010(2) | 0.0091 (12) | $0.004(4)$ | -0.006(2) | -0.004 (3) |
| C2 | $0.013(2)$ | $0.013(2)$ | 0.0075 (10) | -0.007(3) | -0.006(2) | -0.006(2) |
| C3 | 0.017 (3) | 0.007 (2) | 0.0062 (10) | -0.007(3) | -0.003(3) | -0.002 (2) |
| C4 | $0.018(2)$ | 0.016(3) | 0.0073 (9) | 0.000 (4) | -0.014(2) | -0.007 (2) |
| C5 | 0.022 (3) | 0.007 (2) | 0.0064 (9) | -0.007(3) | -0.011 (2) | -0.000 (2) |
| c6 | $0.018(2)$ | 0.008(2) | 0.0081 (9) | -0.002(3) | -0.013(2) | -0.004 (2) |
| C7 | $0.014(3)$ | 0.017 (3) | 0.0056 (10) | -0.012(4) | -0.001 (3) | -0.002 (3) |
| C8 | 0.019 (3) | 0.022 (3) | 0.0065 (11) | -0.026(4) | -0.001(3) | -0.005(3) |
| Cll | $0.009(2)$ | 0.006 (1) | 0.0047 (7) | -0.004 (2) | -0.003(2) | -0.003 (1) |
| C12 | 0.011 (2) | 0.008(2) | $0.0054(8)$ | -0.004 (3) | -0.006(2) | -0.002 (2) |
| C13 | 0.012 (2) | 0.017 (2) | $0.0052(8)$ | -0.008(4) | -0.004 (2) | -0.005 (2) |
| C14 | $0.014(3)$ | 0.018(3) | 0.0073 (11) | -0.000 (5) | -0.007 (3) | -0.007(3) |
| C15 | 0.021 (3) | 0.012 (2) | 0.0076 (11) | -0.000 (5) | -0.008(3) | -0.005(3) |
| C16 | $0.018(3)$ | 0.012 (2) | 0.0072 (9) | -0.002(4) | -0.009(2) | -0.007(2) |

Table 3. (cont.)

| Atom | $B(1,1)$ | $\beta(2,2)$ | $B(3,3)$ | $B(1,2)$ | $\beta(1,3)$ | $B(2,3)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C21 | 0.012 (2) | 0.012 (2) | 0.0041 (7) | -0.007 (3) | -0.002 (2) | -0.003(2) |
| C22 | $0.013(2)$ | 0.014 (2) | $0.0076(11)$ | -0.005 (4) | -0.007 (2) | -0.004(3) |
| C23 | 0.018(3) | 0.015 (2) | 0.0059 (10) | -0.012 (4) | -0.005 (2) | -0.004 (2) |
| C24 | 0.019 (3) | 0.008(2) | $0.0133(17)$ | -0.003(4) | -0.004 (4) | -0.010(3) |
| C25 | 0.017 (3) | $0.022(4)$ | $0.0063(12)$ | $0.003(6)$ | -0.005(3) | -0.003(4) |
| C26 | 0.018(3) | 0.013(2) | 0.0044 (9) | -0.004 (5) | -0.005 (2) | -0.001 (2) |
| C27 | 0.010 (2) | $0.023(3)$ | 0.0040 (7) | -0.017(3) | -0.004 (2) | -0.001(2) |

The form of the anisotropic thermal parameter is:

$$
\operatorname{Exp}\left[-\left(\beta(1,1) h^{2}+\beta(2,2) k^{2}+\beta(3,3) \ell^{2}+\beta(1,2) h k+\beta(1,3) h \ell+\beta(2,3) k \ell\right)\right]
$$

Table 4. Bond Distances with Esds for $\mathrm{H}_{3}\left(\mu-\eta^{2}-\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$.

| Atoms | Distance (R) | Atoms | Distance ( $\AA$ ) |
| :---: | :---: | :---: | :---: |
| Os(1)-0s(2) | 2.866 (1) | $\mathrm{C}(27)-\mathrm{N}$ | 1.274(74) |
| Os(1)-0s(3) | $2.942(7)$ | $\mathrm{N}-\mathrm{C}(21)$ | 1.444(13) |
| Os(2)-0s(3) | 2.944(1) | $\mathrm{C}(21)-\mathrm{C}(22)$ | 1.415(17) |
| Os(1)-c(1) | 1.940 (15) | $\mathrm{c}(22)-\mathrm{C}(23)$ | 1.371(18) |
| Os(1)-c(2) | $1.963(12)$ | $\mathrm{c}(23)-\mathrm{C}(24)$ | 1.386(21) |
| Os(1)-c(3) | 1.895 (13) | $\mathrm{C}(24)-\mathrm{C}(25)$ | 1.414(22) |
| Os(1)-C(12) | 2.107(10) | c (25)-C(26) | 1.373(19) |
| Os(2)-C(4) | 1.925 (15) | $\mathrm{c}(26)-\mathrm{C}(21)$ | $1.352(16)$ |
| Os(2)-C(5) | 1.992 (13) | $c(7)-0(1)$ | 1.124(20) |
| Os(2)-C(6) | $1.923(12)$ | c(2)-0(2) | 1.138(74) |
| Os(2)-N | 2.186(9) | $c(3)-0(3)$ | 1.166 (15) |
| Os(3)-C(7) | $1.904(14)$ | $c(4)-0(4)$ | $1.107(16)$ |
| Os (3)-c(8) | 1.940 (15) | $c(5)-0(5)$ | 1.082 (18) |
| Os(3)-c(11) | 2.165 (9) | C(6)-0(6) | $1.119(15)$ |
| Os(3)-C(27) | $2.082(14)$ | $\mathrm{C}(7)-0(7)$ | $1.146(15)$ |
| $c(11)-c(12)$ | 1.381(13) | $c(8)-0(8)$ | 1.070(17) |
| $c(12)-c(13)$ | 1.405(16) |  |  |
| $c(13)-C(14)$ | 1.343(19) |  |  |
| c(14)-C(15) | 1.332(21) |  |  |
| $c(15)-\mathrm{c}(16)$ | 1.404(19) |  |  |
| c(16)-C(11) | 1.364(14) |  |  |



An ORTEP diagram of $\mathrm{H}_{3}\left(\mu-r_{i}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(: 1-\eta^{2}-\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$ showing $50 \%$ probability ellipsoids. The hydrogen atom $H 27$ is shown in an idealized position with an artificial temperature factor of 1.0 .
and $C-N=1.320(10) \AA$ which were found for an edge-bridging phenylfomimidoyl ligand in the complex $(1-H)\left(11-T_{1}^{2}-H C=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right)$, [2]. The short carbon-nitrogen, $C(27)-N$, distance emphasizes the double bond character of this bond. The hydrogen atom $H(27)$ was not observed crystallographically and is shown in the Eigure in an idealized position. The most convincing evidence for its location on the carbon atom $C(27)$ is provided by the ${ }^{1} H$ iNR spectrum which shows a resonance at $\bar{\delta}=10.58 \mathrm{ppm}$. These shifts are well-known to be characteristic of hydrogen atoms on formimidoyl ligands [2,8-12].

The metal-hydride ligands were not observed crystallographically either. On the basis of the ${ }^{1} \mathrm{H}$ NMR spectrum which showed resonances at $s=-10.64$, -10.83 , and -12.51 ppm , the number of hydride ligands appears to be three. This is also consistent with bonding considerations assuming the benzyne ligand serves as a two electron donor and an overall charge on the complex as zero.

Table 5. Bond Angles with Esds for $\mathrm{H}_{3}\left(\mu-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mu-\eta^{2}-\mathrm{HC}=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Os}_{3}(\mathrm{CO})_{8}$

| Atoms | Angle(deg) | Atoms | Angle(deg) |
| :---: | :---: | :---: | :---: |
| Os (1)-us (2)-os (3) | 60.84(1) | $\mathrm{C}(7)-0 \mathrm{~s}(3)-\mathrm{c}(8)$ | 92.6(6) |
| Os (2)-0s(1)-0s(3) | 60.88 (1) | $\mathrm{c}(7)-0 \mathrm{~s}(3)-\mathrm{c}(27)$ | 95.3(5) |
| Os(i)-0s(3)-0s(2) | 58.28 (1) | $\mathrm{C}(7)-0 \mathrm{~s}(3)-\mathrm{C}(11)$ | 100.0(5) |
| Os (2)-0s (1)-c(1) | 172.0(4) | $\mathrm{C}(8)-0 \mathrm{~s}(3)-\mathrm{c}(27)$ | 95.4 (6) |
| $0 \mathrm{~s}(2)-0 \mathrm{~s}(1)-\mathrm{C}(2)$ | 84.7(4) | $C(8)-0 s(3)-C(11)$ | 97.3(5) |
| Os (2)-0s (1)-c(3) | 90.4(4) | $\mathrm{c}(27)-0 \mathrm{~s}(3)-\mathrm{C}(11)$ | 159.7(4) |
| Os(2)-0s(1)-c(12) | 89.4 (3) | Os (1)-c(12)-C(11) | 115.0 (7) |
| $0 \mathrm{~s}(3)-0 \mathrm{~s}(1)-\mathrm{C}(1)$ | $111.2(4)$ | Os (1)-C(12)-C(13) | $131.1(9)$ |
| Os (3)-Os(1)-C(2) | 103.2(4) | Os (3)-C(11)-C(12) | 107.5 (6) |
| Os (3)-0s(1)-c(3) | $143.7(3)$ | Os (3)-C(17)-C(16) | 128.4(9) |
| Os(3)-0s(1)-C(12) | 67.7 (3) | c(17)-C(12)-C(13) | 113.1 (9) |
| C(1)-0s (1)-C(2) | 97.4 (5) | C(12)-C(13)-C(14) | 124.9(12) |
| $\mathrm{C}(1)-\mathrm{Os}(3)-\mathrm{C}(3)$ | 97.1 (5) | C(13)-C(14)-C(15) | 119.8(13) |
| $\mathrm{C}(1)-0 \mathrm{~s}(1)-\mathrm{c}(12)$ | 87.5(4) | C(14)-C(15)-C(16) | 119.6 (13) |
| $\mathrm{C}(2)-0 \mathrm{~s}(1)-\mathrm{C}(3)$ | 95.0 (5) | $C(15)-C(16)-C(11)$ | $118.9(13)$ |
| $\mathrm{C}(2)-0 \mathrm{~s}(1)-\mathrm{C}(12)$ | 70.8(5) | $C(16)-C(11)-C(12)$ | 123.6(10) |
| $\mathrm{C}(3)-0 \mathrm{~s}(1)-\mathrm{c}(12)$ | 92.1 (4) | Os (2)-N-C (27) | 112.4(7) |
| Os (1)-0s (2)-C(4) | 89.6(4) | Os (2)-N-C(21) | $125.7(7)$ |
| Os (7)-0s (2)-c(5) | 168.1 (3) | Os (3)-C(27)-N | 113.3 (8) |
| Os(1)-0s(2)-C(6) | 84.4(1) | $\mathrm{C}(27)-\mathrm{N}-\mathrm{C}(21)$ | $122.0(10)$ |
| Os (1)-Ȯs (2)-N | 90.5(2) | $\mathrm{N}-\mathrm{C}(21)-\mathrm{C}(26)$ | 122.1(10) |
| Os(3)-0s(2)-c(4) | 142.2(4) | $\mathrm{N}-\mathrm{C}(21)-\mathrm{C}(22)$ | 120.5(10) |
| Os (3)-0s(2)-C(5) | $110.7(13)$ | $C(21)-C(22)-C(23)$ | 122.3(12) |
| Os (3)-0s (2)-c(6) | 107.6(3) | $C(22)-C(23)-C(24)$ | $178.8(13)$ |
| Os(3)-Os (2)-N | $65.3(2)$ | C (23)-C (24)-C(25) | 179.7(13) |
| C(4)-0s (2)-C(5) | 101.7(5) | C (24)-C (25)-C(26) | 119.0(13) |
| $\mathrm{C}(4)-0 \mathrm{~s}(2)-\mathrm{C}(6)$ | $90.9(5)$ | $C(25)-C(26)-C(21)$ | 122.9(12) |
| $\mathrm{C}(4)-0 \mathrm{~s}(2)-\mathrm{N}$ | 94.3(4) | C(26)-C(21)-C(22) | $117.3(10)$ |
| $\mathrm{C}(5)-0 \mathrm{~s}(2)-\mathrm{C}(6)$ | 91.8(5) | Os (1)-C(1)-0(1) | 179.0(10) |
| $C(5)-0 s(2)-N$ | $92.2(4)$ | Os (1)-c(2)-0(2) | 177.3(12) |
| $\mathrm{C}(6)-\mathrm{Os}(2)-\mathrm{N}$ | 170.7(4) | Os (1)-c(3)-0(3) | 176.8(12) |
| Os (1)-0s(3)-C(7) | 106.8 (4) | Os (2)-C (4)-0(4) | $178.7(12)$ |
| Os (1)-0s (3)-C(8) | 157.8(5) | Os (2)-C(5)-0(5) | 174.5(12) |
| Os (1)-0s(3)-c(27) | 93.6(3) | Os (2)-C(6)-C(6) | 178.6(12) |
| Os (1)-0s (3)-C(11) | 69.1 (2) | Os (3)-C(7)-0(7) | 175.3(12) |
| Os (2)-0s (3)-c. 7 ) | 155.5(4) | Os (3)-c(8)-0(8) | 176.2(16) |
| $0 \mathrm{~s}(2)-0 \mathrm{~s}(3)-\mathrm{c}(8)$ | 106.7(4) |  |  |
| 0s (2)-0s (3)-c(27) | 68.6(3) |  |  |
| Os (2)-0s(3)-C(11) | 92.5(2) |  |  |

Table 6 lists least squares planes of important atomic groupings. The benzync and formimidoyl ligands are nearly perpendicular to the plane of the $0 s_{3}$ triangle. The dihedral angles are $79.0^{\circ}$ and $72.9^{\circ}$, respectively.

There are no unusually short intermolecular contacts. The shortest cantacts are between oxygen atoms of the carbonyl ligands, e.g. $O(1)--0(3)=3.12 \mathrm{~A}$, $0(4)--0(5)=3.09 A^{\circ}$ 。

Table 6. Unit Weighted Least Squares Atomic Planes for $H_{3}\left(\mu-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$

| A) | Plane No. | Atoms | Distance from Plane ( $\left.{ }^{\circ} \mathrm{A}\right)$ |
| :---: | :---: | :---: | :---: |
|  | 1 | Os (1) | 0.00 |
|  |  | Os(2) | 0.00 |
|  |  | Os (3) | 0.00 |
|  |  | C(11)* | 1.94 (2) |
|  |  | C(12)* | 1.90 (2) |
|  |  | C(27)* | -1.83(2) |
|  |  | N * | -1.91 (1) |
|  | 2 | c(11) | 0.01 (2) |
|  |  | C(12) | -0.02(2) |
|  |  | C(13) | 0.01 (2) |
|  |  | c(14) | 0.01 (2) |
|  |  | c (15) | -0.02 (2) |
|  |  | C(16) | 0.01 (2) |
|  |  | Os(1)* | -0.080(1) |
|  |  | Os(2)* | 2.540 (1) |
|  |  | Os(3)* | 0.311 (1) |
|  | 3 | Os(2) | $0.019(1)$ |
|  |  | Os (3) | -0.021(1) |
|  |  | C (27) | 0.05 (2) |
|  |  | N | -0.05 (2) |
|  |  | Os(1)* | -2.391(1) |
|  | 4 | c(21) | 0.01 (2) |
|  |  | C(22) | -0.01(2) |
|  |  | C(23) | 0.00 (2) |
|  |  | C (24) | 0.02 (3) |
|  |  | c (25) | -0.01(3) |
|  |  | C (26) | 0.00 (2) |
|  |  | N * | 0.05 (2) |
|  |  | c (27)* | 0.71 (2) |

B) Dihedral Angles between Planes

| Planes | Angles(deg) |
| :--- | :---: |
| $1-2$ | 79.0 |
| $1-3$ | 72.9 |
| $1-4$ | -86.2 |
| $2-3$ | 48.5 |
| $2-4$ | 79.2 |
| $3-4$ | 35.0 |

C) Equations of the Planes are of the Form

$$
A x+B y+C z-D=0
$$

| Plane | A | B | $C$ | D |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 1 | -0.5776 | 0.8153 | -0.0418 | -1.5775 |
| 2 | -0.2723 | -0.0075 | -0.9622 | -6.1474 |
| 3 | 0.3108 | 0.5412 | -0.7814 | 1.3690 |
| 4 | 0.7852 | 0.4538 | -0.4212 | 5.6593 |

## Acknowledgement

This work has been supported under Contract No. ER-78-2-02-4900 from the Office of Basic Energy Sciences, U. S. Department of Energy. NMR spectra were run on the Southern New England High Field $N A R$ facility which is supported by a grant from the Biotechnical Kesources Program of the National Institutes of Health (RR-798). We wish to thank Engelhard Industries for a gift of osmium tetroxide.

## References

1. R. D. Adams and N. M. Golembeski, J. Amer. Chem. Soc., 100 (1978)4622.
2. R. D. Adams and N. M. Golembeski, J. Amer. Chem. Soc., submitted for publication.
3. R. D. Adams and N. M. Golembeski, Inorg. Chem., submitted for publication.
4. "International Tables for X-ray Crystallography", Vol. IV, Kynoch Press, Birmingham, England, 1975: a) Table 2.3.1, pp 149-150; b) Table 2.2B, pp 99-101.
5. G. J. Gainsford, J. M. Guss, P. R. Ireland, R. Mason, C. W. Bradford, and R. S. Nyholm, J. Organometal. Chem., $40(1972) \mathrm{C7O}$.
6. C. W. Bradford, R. S. Nyholm, G. J. Gainsford, J. M. Guss, P. R. Ireland, and R. Mason, J. Chem. Soc. Chem. Commen. (1972) 87.
7. C. W. Bradford and R. S. Nyholm, J. Chem. Soc. Dalton Trans., (1973)529.
8. D. F. Christian, G. R. Clark, W. R. Roper, J. M. Waters, and K. R. Whittle, J. Chem. Soc. Chem. Commun., (1972)458.

9: D. F. Christian, H. C. Clark, and R. F. Stepaniak, J. Organometal. Chem., 112(1976)209.
10. D. F. Christian and W. R. Roper, J. Chem. Soc., Dalton, Trans., (1975)2556.
11. D. F. Christian and W. R. Roper, J. Organometal. Chem., 80(1974) C35.
12. T. J. Collins and W. R. Roper, J. Organometal. Chem., 159(1978)73.


[^0]:    * The table of final observed and calculated structure factor amplitudes has been deposited as NAPS Document No. 03427 (29 pages). Order form ASIS/NaPS, c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. A copy may be secured by diting the document number, remiting $\$ 7.25$ for photocopies or $\$ 3.00$ for microfiche. rdvance payment is required. Make checks payable to Microfiche Publications.

